新聞及香港科大故事

2021

新聞
海洋科學, 海洋生物, 研究, 生物學
科大首次破解深海海底熱泉神盾螺共生體基因組
神盾螺 (圖片來源﹕陳充博士) 由香港科技大學海洋科學系系主任及講座教授暨捷成David von Hansemann 理學教授錢培元領導的研究團隊,於《自然· 通訊》期刊發表了有關海底熱泉一種無脊椎動物—神盾螺共生體運作機制的最新研究成果。 該研究不僅發現神盾螺食道腺(消化系統)中同時存在硫氧化細菌和甲烷氧化細菌兩種共生菌,更首次破解這兩種共生菌及宿主神盾螺的基因組,揭示了共生體利用化學能量生產營養物質的過程以及適應極端環境的分子機制,為地球生命的起源提供了新的啟示。

2020

新聞
生命科學, 神經科學, 獎項
探索腦袋(只供英文版本)
高研院資深訪問學人 John HARDY 教授說,一般人認為年紀漸長無記性屬正常情況,但有可能是阿爾茨海默氏症的早期徵兆,必須要留意。
新聞
機械及航空航天工程, 土木及環境工程, 環境工程學: 環境可持續性, 能源
嶄新陰極設計顯著提升電池性能(只供英文版本)
嶄新陰極設計顯著提升新一代鋰硫電池性能,智能手機、電動車及無人機可更長時間使用
新聞
智慧城市, 大數據, 人工智能, 資訊科技, 計算機科學
構建香港智慧城市(只供英文版本)
Prof. CHEN Kai, Associate Professor of Computer Science and Engineering, is now the brain behind what will become Hong Kong’s ‘brain’ in future – the next-generation artificial intelligence (AI) computing hub for the entire city that encompasses smart bus schedules, taxi dispatch, typhoon warning, medical diagnosis, fintech and others. 
新聞
神經科學, 阿爾茲海默症, 生命科學
科大發現阿爾茲海默症治療新靶標
香港科技大學(科大)研究團隊利用了一個研究大腦的嶄新方法,不但有助評估潛在藥物對阿爾茲海默症(AD)患者的作用,更因而發現了治療AD的新靶標,為阿爾茲海默症的研究及藥物開發開闢新路徑。 葉玉如教授 (左二)及其研究團隊。 阿爾茲海默症的病理機制研究已開展了數十年,但至今仍未有有效的治療方法。傳統的研究方法在判斷分子靶標是否可應用於藥物開發方面存有一定的局限性。例如在分子和病理研究中,AD患者腦部會被當作一個整體進行分析,但不同類型的腦細胞以及其異變對AD的作用,卻往往因此而被忽視,尤其是一些數量較少、例如僅佔腦細胞總數5%的小膠質細胞及1%的內皮細胞等。 由科大研究與發展副校長、分子神經科學國家重點實驗室主任及生命科學部晨興教授葉玉如領導的研究團隊,近日不僅解決了這個問題,更同時在內皮細胞和小膠質細胞發現了多個潛在的新分子靶標,可用於開發治療AD的藥物。 葉教授的團隊利用先進的單細胞轉錄組分析技術,分析AD患者遺體大腦中特定細胞的功能。這項技術讓研究人員在單細胞水平上追蹤傳統工具無法觀測到的大腦分子變化。研究團隊對AD患者大腦中特定細胞的轉錄組變化作了全面分析,找到與AD相關的細胞亞型和病理途徑,並發現在大腦血管中內皮細胞亞群的作用。研究首次發現血管自然的增新程序和內皮細胞亞群中的免疫激活與AD的發病機理有關連,顯示血管失調與阿爾茲海默症之間存在聯繫。研究還發現了新型分子靶標,有助恢復AD患者的神經動態平衡。
新聞
研究, 生命科學, 物理學
揭示不同硬度基質中轉移性癌細胞的新機制
癌細胞轉移是指癌細胞從原發性腫瘤擴散到不同的身體部位,是癌症發展中最致命的階段。當癌細胞脫離原發性腫瘤並進入血液或淋巴系統時,它們就可以轉移到身體各個地方,在新的擴散組織中增生從而形成繼發性腫瘤。百分之九十的癌症死亡個案就是由癌細胞轉移導致。 癌細胞在轉移過程中會主動與周圍的微環境互動,而這種作用機制尚未被闡明,這使得轉移癌細胞如何應對繼發組織中的新環境成為癌症研究中的一個關鍵問題。最近,香港科技大學(科大)的研究人員及其國際合作者發現了一種轉移性癌細胞在不同硬度基質上的新回應和適應機制,這一研究結果將有助於開發用於轉移性癌細胞的診斷工具和癌症治療。 這項研究結果已在2020年9月18日的《物理化學快報》上發表。 在這項研究中,由科大物理系和生命科學部助理教授朴孝根帶領的研究團隊採用聚丙烯酰胺(PAA)基質模擬了從腦到骨骼的各種組織的硬度,並利用先進的螢光共振能量轉移成像技術和朴教授的研究團隊組建的磁鑷平臺對單個轉移性乳腺癌細胞(MDA-MB-231)對不同硬度的回應和適應機制進行了研究。
新聞
研究, 科技及先進材料, 電子及計算機工程學, 生命科學, 阿爾茲海默症
應用自適應光學雙光子內窺鏡技術實現高分辬率深腦活體成像
以小型哺乳動物為模型的活體腦成像技術對於研究大腦的功能至關重要。然而大腦由數百億個神經元組成,每個神經元都與成千上萬個神經元以突觸相連。突觸是神經元之間的接觸點,具有傳遞資訊的功能。因此,為了真正理解神經元突觸的動態相互作用機理,具有高空間解析度的腦結構和功能成像技術是不可或缺的。 儘管目前已經有許多對大腦進行成像的方法,但它們都有相應的局限性。電子顯微鏡可以提供高空間解析度,但不適合活體組織的成像。常見的非入侵性技術,例如CT,MRI / fMRI,PET和超聲波,其空間解析度有限,不能對神經元乃至突觸進行成像。光學顯微鏡能提供亞細胞解析度並且對生物樣品沒有毒性,但其成像深度受到生物組織和成像系統引起的光學像差和散射的限制。因此,雙光子顯微鏡僅適用於腦皮層區域的成像,而無法對皮層下和深層的大腦結構進行成像。 鑒於生命科學研究有更高成像能力的需求,香港科技大學(HKUST)的一組科學家將目光集中在實現突觸解析度的活體大腦成像上。電子與計算機工程學系瞿佳男教授和研究與發展副校長及生命科學系晨興教授葉玉如教授合作開發了一種新的成像技術——自我調整光學雙光子內窺鏡——可以對深層大腦結構進行高解析度的活體成像。值得留意的是,這項技術可用於揭示尚未被深入研究的大腦區域的功能。
新聞
研究及科技, 先進材料
香港科大研究人員研發出世界上第一種傳聲玻璃材料
玻璃是一種隔音材料,但香港科技大學(科大)的研究人員近日卻發現新方法,令玻璃也可以傳聲。有關發現不但為研發可於水底使用的手機及其他電子產品帶來新機遇,亦為不同需求的建築設計提供更大彈性。由科大物理學系溫維佳教授領導的研究團隊利用共振原理,發現在兩片玻璃之間有規律的挖出一個個空腔(見左圖),會改變聲波的振動模式,讓聲音得以穿越。透過調整空腔的大小和形狀,便可以傳送不同的音頻,這個概念類似透過調整笛子孔洞的位置,以發出不同強度的音調。該研究由科大、重慶大學以及深圳環波科技的研究人員共同完成,成果剛於應用物理學頂級期刊《應用物理學快報》中發表。溫維佳教授表示:「新發現顛覆了玻璃在聲學中的用途,為新應用提供理論基礎。以智能手機或其他電子設備為例,如果生產商無須再在其玻璃顯示屏上預留孔洞傳遞聲音,它們便可設計出防水效能更持久的產品。此外,室內某些需同時兼顧透光與傳聲要求的環境,如銀行櫃檯或監獄接待室,也可能認為這項新技術非常有用。」作為先進功能材料領域的專家,溫教授的研究範疇涵蓋微球和納米粒子的設計和製造、軟物質物理學、智能材料、超材料、電子材料和微流體等。當中很多技術已成功進行技術轉移。