新闻及香港科大故事
2024

新闻
科大工学院团队为高性能全固态锂金属电池研制先进固态电解质 有助增强储能应用
香港科技大学(科大)工学院的研究团队,最近成功研发一种新一代用于锂金属电池的固态电解质,能够大幅提升电池的安全性和性能。这项突破性发现,有助于推动应用于电动车、便携式电子产品和电网供电等领域的储能技术发展。
与传统锂金属电池相比,全固态锂金属电池以固态电解质取代了易燃的液态电解质,并抑制锂枝晶生长的有害现象,有效提高电池的安全性和能量密度。这种电池为开发新一代储能技术带来前景。然而,全固态锂金属电池的广泛应用受到室温下的低离子电导率和锂离子传递数的限制。
为解决这项挑战,由科大化学及生物工程学系助理教授KIM Yoonseob领导的研究团队,开发了一种新颖的制备方法,结合一种称为离子型共价有机框架(iCOF)的多孔结晶聚合物与聚离子液体(PIL),制造出无溶剂和无塑化剂添加的高性能固态电解质。
这种新型iCOF/PIL合成固态电解质,在室温下具有高离子电导率(达1.50 x 10−3 S cm−1)和高锂离子传输性能(大于0.8)。通过结合实验数据和分子动力学模拟结果分析,团队发现PIL、双(三氟甲烷)磺酰亚胺锂盐(LiTFSI)和iCOF之间建立的共配位和竞争配位机制能够加快锂离子传输,并同时限制TFSI离子的移动。
团队利用这种高性能固态电解质,进一步制造了一款由合成固态电解质与磷酸铁锂合成正极 (LiFePO4 composite cathode)组成的完整锂金属电池。团队发现该电池在1C充放电率和室温下带有141.5 mAh g−1的初始放电容量,经800次循环充电和放电后,仍然保持显著的87%容量。
Kim教授表示:「我们提出的突破性方法首次成功展示出运行稳定、具高可逆容量的全固态锂金属电池,充分展现了iCOFs于电化学储能装置的巨大潜力,为全固态锂金属电池于电动车、便携式电子产品和电网供电等的广泛应用提供了新路向。」

新闻
科大于2024-25年度「卓越学科领域计划」及「主题研究计划」成绩超卓 获批拨款为本地院校之冠
由香港科技大学(科大)领导的三个研究项目,今日获研究资助局(研资局)2024/25年度「卓越学科领域计划」和「主题研究计划」合共拨款港币2.125亿元资助,金额冠绝本地院校,亦是科大历来最好的成绩。
获批拨款的三个研究项目涵盖不同范畴,当中包括开发以人为本的前沿AI及机器人技术,改善长者照顾及护理;创建「香港海岸分身」数码系统,管理极端天气对海岸的影响;以及通过技术转型,提升香港在可持续供应链金融中的地位。
科大校长叶玉如教授向研究团队表达祝贺,她说:「科大今年于卓越学科领域计划和主题研究计划再创历史佳绩,不但充分体现大学对推动卓越研究的坚定决心,亦印证了科大学者的研究实力昭著。而当中两个获资助项目,由科大与科大(广州)的研究人员携手领导,更展现了两校之间的协同发展。透过日益紧密的研究协作,两校将继续引领更多突破性的跨学科研究及科技创新,裨益香港及其他地区。」
科大副校长(研究与发展)郑光廷教授亦为团队的成就感到振奋:「是次科大获研资局两大重点拨款计划的认可,意义非凡。获奖的三个项目分别利用人工智能、机器人和数据科学等尖端科技驱动,彰显了科大致力结合科技创新与研究,探索新兴领域的研究突破。我们预期,随着更多世界级的科研设施相继于校园落成,将有助科大的科研人员进一步探寻知识,应对日益复杂的全球挑战。」
三个获拨款项目包括:

新闻
科大五个研究项目获首批「产学研1+计划」拨款
香港科技大学(科大)一共有五个研究项目获创新科技署产学研1+计划(RAISe+)的拨款资助,成为首批24个项目之一。 拨款将支持各研究团队加快步伐,早日将研究成果惠及市民大众,达至产业、学术机构及研究三赢。 这些项目分别由科大工学院及理学院教授领导,涵盖不同范畴,包括:基因治疗、癌症肿瘤成像、污水处理、传感芯片和人工智能机械人等。
以下是各获批项目的详情(项目排名不分先后):
项目一:家族性阿尔茨海默病的新型基因治疗策略
科大校长、晨兴生命科学教授兼香港神经退行性疾病中心主任叶玉如教授领导的研究团队开发了一种新型的「一对多」基因编辑策略,用于治疗家族性阿尔茨海默病(FAD)。FAD是一种严重的早发性疾病,目前缺乏有效的治疗方法。这种创新的基因编辑方法有潜力发展成为长效、改善病程的临床疗法。
FAD影响着全球约200万至300万人,是阿尔茨海默病(AD)的一种,具有发病较早、症状更严重和恶化速度较快的特点,有时早在30岁或 40岁就出现症状。FAD主要是淀粉样蛋白前体(APP)、早老素-1(PSEN1)和早老素-2(PSEN2)三个基因之一的遗传突变引起。这些突变皆导致大脑中淀粉样蛋白(Aβ)的累积增加,这是AD 的主要病理特征。

香港科大故事
从科大迈向大湾区:扎铁机械人的知识转移之旅
今年四月,科大在第49届日内瓦国际发明展中,有四个项目赢得了评审团嘉许金奖,其中之一是扎铁机械人项目。此发明品由哲学硕士生李昊臻带领团队,在香港智能建造研发中心副主任梁浩博博士的指导下,共同研发而成。而科大亦在本届发明展中再创高峰,共有多达36个研发项目夺得不同殊荣,成绩彪炳。
单看外表,这部扎铁机械人的设计简洁利落,不似科幻巨作中所见的机械人一般引人注目。然而,它却是科大研究员与大湾区建造业界同心协作的成果。他们的抱负远大,期望实践建造工序自动化,从而提升工作效率。
科大跨学科学院一向以其跨学科自选课程见称,现正修读此课程最后一年的昊臻也是从中获得灵感,继而带领扎铁机械人研究项目。他的专攻范畴为智能建造与机械人,透过灵活的课程结构,不但可以活用大学的丰富学习资源,更获得国际知名的机械人学学者、科大电子及计算机工程学系李泽湘教授的指导。
创业梦想 萌芽结果

新闻
科大团队发现新的细胞因子促进SARS-CoV-2进入宿主细胞
由香港科技大学(科大)生命科学部副教授郭玉松教授带领的研究团队,最近揭示了一项有关新型冠状病毒(SARS-CoV-2)的新发现。团队最新发现的宿主因子会通过与SARS-CoV-2刺突蛋白的受体结合域相互作用,来促进病毒进入细胞。这项发现不但为我们理解SARS-CoV-2感染机制带来新视角,更为治疗新冠提供了新方向。
科学界普遍认为,SARS-CoV-2的侵染过程主要依赖其刺突蛋白的受体结合域(CoV2-RBD)与宿主细胞受体ACE2的相互作用。过往虽然有大量研究围绕ACE2的过度表达如何促进病毒入侵宿主细胞,但对于缺乏ACE2是否能抑制病毒入侵的探究却相对较少。就此,由郭玉松副教授带领的科大团队,遂与香港大学(港大)和香港理工大学(理大)的研究团队,展开联合研究,透过GST pull-down方法,成功筛选出除了ACE2之外、与CoV2- RBD结合的多种宿主表面因子。
实验结果显示,在经筛选的众多宿主表面因子中,宿主因子SH3BP4调节了CoV2-RBD的内吞过程,并以不依赖ACE2,而是依赖整合素和网格蛋白的方式,介导SARS-CoV -2伪病毒进入宿主细胞。这项发现揭示了SH3BP4在病毒透过内吞途径入侵宿主过程中扮演的重要角色。除了SH3BP4外,部份经筛选的细胞因子,例如ADAM9和TMEM2,相比于感染力相对低的SARS-CoV的RBD,对CoV2-RBD显示出更强的亲和力,表明这些因子于SARS-CoV- 2入侵中具有特定作用。此外,研究团队更发现了偏好与SARS-CoV-2 Delta变异株的RBD结合的因子,有可能进一步增强Delta变异株的入侵能力。
郭玉松教授表示:「本次研究不仅揭示了SARS-CoV-2入侵宿主细胞过程中发挥作用的新宿主细胞表面因子,还发现了整合素在介导病毒内吞中的关键作用,为治疗新冠奠下新的研究基础。」

新闻
科大团队研发基于液态金属的电子逻辑组件 成功模仿捕蝇草的智能捕食机制
由香港科技大学(科大)工学院领导的一支研究团队,研发了一种基于液态金属的仿捕蝇草智能捕食机制的电子逻辑组件。 该器件本身具有记忆和计算能力,无需其它辅助电子器件即可如捕蝇草般智能地响应各种刺激序列。 这项研究探讨的智能策略及逻辑机制为理解自然界中的「智能」带来崭新视角,也对「具身智能」的发展提供了启发。
捕蝇草的独特捕食机制向来是生物智能领域的一个研究焦点。 这个机制令捕蝇草能有效区分各种外部刺激,如单次、双次刺激,进而区分如雨滴等的环境干扰(单次刺激)及昆虫(双次刺激),以确保成功捕获猎物。 此项功能主要是由于捕蝇草的触毛具有类似记忆和计算的特征,让它可以感知刺激和产生动作电位(细胞因受刺激而产生的电信号改变),并在短时间内记着刺激。
由科大电子及计算机工程学系副教授申亚京领导,以及其毕业于香港城市大学的前博士学生杨媛媛博士(现为厦门大学副教授)共同组成的研究团队,以捕蝇草内部电信号累积/衰减模型为基础,提出了一种基于液态金属丝延伸/缩短形变的液态金属逻辑模块(简称LLM)及组件。 该器件以氢氧化钠溶液中的液态金属丝为导电介质,基于电化学及电毛细效应控制液态金属丝的长度,进而依据阳极和门极所施加的电刺激调控阴极输出。 研究结果显示,LLM本身可以记忆电刺激的持续时间和间距,计算多次刺激累积的信号,并表现出类似捕蝇草的超卓逻辑功能。
为展示他们的研究,申教授及杨博士搭建了一套LLM智能决策器件、仿触毛机械开关、仿叶片柔性电驱动器的人工捕蝇草系统,成功复制并实现了捕蝇草的捕食过程。 此外,他们还展示了LLM在功能电路集成、滤波、人工神经等方面的应用前景。 这项研究不仅为模拟植物的智能行为提供了见解,也为后续的生物信号模拟器件及具身智能系统研发提供了可靠的参考。
申教授表示:「当提到『人工智能』,一般人想到的都是模拟动物神经系统的智能。 然而,在自然界中,很多植物也可以通过特定的材料、结构组合,展示出一定智能。 这个研究方向有助我们理解自然界的'智能',并为构建'类生命智能'提供新的视角和思路。”

新闻
科大团队提出高频重力波创新探测方法 助探索宇宙奥秘
由香港科技大学(科大)物理系副教授刘滔教授领导的研究团队,最近提出了一种探测高频重力波(high-frequency gravitational waves, HFGWs)的突破性方法,只需利用现时正在运作以及未来建造的天文望远镜,便可能在行星磁层中有效地探测高频重力波。 这项研究突破有可能大大提高科学家探测高频重力波的能力,并促进对早期宇宙和剧烈天文事件的研究。
重力波可由早期宇宙的相变、原始黑洞的碰撞,甚至是高温粒子的辐射和衰变等事件产生,但重力波效应极其微弱,目前只在相对较低的频段中利用干涉测量被发现。 利用重力波探索天文和宇宙学,仍然非常困难,尤其在1000 赫兹以上的高频段,干涉测量技术的使用也受到极大限制。
为了解决这个问题,刘滔教授带领及其博士后研究员张晨博士,与中国科学院高能物理研究所任婧教授合作组成的研究团队,取得突破性研究结果。 研究利用了一个有趣的物理效应,即重力波在磁场中可以转换为潜在的、可被侦测到的电磁波。 若利用行星磁层内的长路径提高转换效率,便可产生更多的电磁波讯号。 由于这类行星实验室内信号通量的角分布广泛,因此若望远镜具有宽视野,探测能力可获得进一步增强。
这个崭新概念让天文望远镜化身成重力波信号的探测器,通过不同天文望远镜的合并使用,可以广泛覆盖高频重力波频率,与天文观测的电磁波频率相同(约兆赫兹至10^28赫兹)。 这甚至包括很大一部分以前从未探索过的重力波频段。 这项研究对近地轨道卫星探测器,以及木星磁层内正在执行任务的探测器的灵敏度,都进行了初步评估。
这次研究和相关结果已于 3月在《物理评论快报》发表,及后于5月更获《自然天文学》的重点文章以「以行星大小的实验室为宇宙学提出新见解(Planet-sized laboratories offer cosmological insights)」为题撰文介绍,强调这项研究对未来研究新型重力波探测技术的重要性。

新闻
科大研究:科学认知和宗教信仰的形成取决于他人的言论而非亲身经历
由香港科技大学(科大)领导的一个国际研究团队在最近一项研究中发现,人们对科学和宗教的信念主要由他人的话语所塑造,而非由个人的经历所形成。这项研究将有助于加深公众理解对气候变化和疫苗接种等重要社会问题信念形成的过程。
在现代社会,人们普遍更相信科学现象(如氧气)的存在而非宗教现象(如上帝)的存在,传统观点认为这是因为人们认为可以实实在在的体验到氧气,而宗教实体则很难被实际观察到。
由香港科技大学社会科学部研究助理教授马少聪领导的团队挑战了这一传统观点。团队认为,无论是科学认知还是宗教信仰,其主要形成的因素都是由来自他人(如专家或我们周围的人)的见证或资讯所塑造的,而非个人的亲身经验。
团队的研究结果强调,他人的言语对人们信仰的形成和对世界的理解具有决定性作用,这与认为亲身经验是形成科学认知的主要因素的观点恰恰相反。
马教授说:「虽然个人的亲身经历看似对于我们理解世事有重要影响,但其实我们的理解是深受他人的言语所影响。就像目睹亲人患病时,孩子很难自己推测出这是由病毒引致的疾病;相反,他们反而会更相信他人的话,例如父母的教导,以理解其中的因果关係。因此,这一研究成果将有助于找到向公众传达科学信息的最有效方式。通过强调科学证据的可信度和共识,有利于更好促进公众接受科学事实,尤其是在推广和研究气候变化等新兴科学话题方面。」
她进一步解释:「这一洞见对于消除误导、加强公众对科学问题的理解和支持至关重要,尤其是在应对气候变化和接种疫苗等问题上。」
研究团队通过回顾过去几十年的实证证据,提出了一个新的理论模型,旨在解释人们为何会相信不可见实体的存在,如科学中的病菌或宗教中的上帝。
是次研究发现,例如即使人们无法用肉眼看到病菌,但仍然相信它们的存在,是因为医生和科学家告诉人们病菌的存在。同样,我们推断人类会因病菌而生病,是通过从他人那里了解到这一因果关係,而非通过个人观察认识到这一联繫。
该模型还论证了信源越可信,认同信息的人越多,人们就越有可能相信它。「如果我们身边很多人都相信气候变化是真实的,那麽他们的共识就会加强我们对这些认知的信任度,」马教授表示。